Nonlinear controller design for a magnetic levitation device
نویسندگان
چکیده
Various applications of micro-robotic technology suggest the use of new actuator systems which allow motions to be realized with micrometer accuracy. Conventional actuation techniques such as hydraulic or pneumatic systems are no longer capable of fulfilling the demands of hi-tech micro-scale areas such as miniaturized biomedical devices and MEMS production equipment. These applications pose significantly different problems from actuation on a large scale. In particular, large scale manipulation systems typically deal with sizable friction, whereas micro manipulation systems must minimize friction to achieve submicron precision and avoid generation of static electric fields. Recently, the magnetic levitation technique has been shown to be a feasible actuation method for microscale applications. In this paper, a magnetic levitation device is recalled from the authors’ previous work and a control approach is presented to achieve precise motion control of a magnetically levitated object with sub-micron positioning accuracy. The stability of the controller is discussed through the Lyapunov method. Experiments are conducted and showed that the proposed control technique is capable of performing a positioning operation with rms accuracy of 16 lm over a travel range of 30 mm. The nonlinear control strategy proposed in this paper showed a significant improvement in comparison with the conventional control strategies for large gap magnetic levitation systems.
منابع مشابه
Implementation of Narma-l2 Controller for Magnetic Levitation System
This paper presents the design of feedback linearization and neural network based feedback linearization (NARMAL2) controller for a magnetic levitation system. The magnetic levitation system is one of the classical nonlinear systems. The paper provides simulation results to validate the theoretical design.
متن کاملNonlinear Model & Controller Design for Magnetic Levitation System
This paper aims at development of non linear dynamic model for Magnetic Levitation System and proposed linear and nonlinear state space controllers. The linear controller was designed by linearizing the model around equilibrium point, while nonlinear controller was based on feedback linearization where a nonlinear state-space transformation is used to linearize the system exactly. Relative degr...
متن کاملTuned Parameters of PID for Optimization of Losses in Magnetic Levitation System
In this paper a new method is proposed for determining PID controller parameters in order to decrease losses in levitation system of magnetic trains. It is assumed that this system is a hybrid system and it consists of electric and permanent magnet. For optimization of losses initially AC losses of magnetic levitation system are calculated. Linear model of levitation system as well as modeling ...
متن کاملNonlinear Control of a Planar Magnetic Levitation System
In this paper, we derive the model of a three-magnet positioning device and design a nonlinear control that stabilizes it. The motivation of this work is to develop tools that may have practical significance to, e.g., photolithography and to create a challenging nonlinear control problem which can be used to test novel nonlinear control approaches. The nonlinear controller designed here transfo...
متن کاملImplementation of Fuzzy Controller to Magnetic Levitation System
-Elimination of frictional losses has been receiving large attention to reduce power consumption and the maintenance cost thus increasing the power efficiency. Considering the above facts, Magnetic levitation technology has given the contribution in industry as a part. Now, since Maglev's are highly nonlinear and inherently unstable, the objective is to design a controller that would be an attr...
متن کاملDesign of TS-PDC type Fuzzy Controller and stabilization of Magnetic Levitation System
In this paper technique applies is known as parallel distributed compensation (PDC). This PDC technique is used for the position control of a Magnetic Levitation system. Parallel Distributed Compensation technique is based on the TS-PDC type fuzzy model. In this paper it is shown that this PDC technique can be successfully used for the stabilization of Magnetic Levitation System at any arbitrar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007